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The behaviour of a fluid mixture near a structureless hard wall is investigated. Following 
earlier work [D. Henderson, F.F. Abraham and J.A. Barker, Molec. Phys. 31, 1291 
(1976)l we consider the limiting case of a fluid mixture in which one of the species, 
representing the wall, is dilute and infinitely large. In this limit the Ornstein-Zernike 
equations yield the density distributions of each of the components with respect to the 
hard wall. The specific case of a mixture of hard spheres in contact with a hard wall is 
treated within the Percus-Yevick approximation and explicit results are obtained for a 
binary mixture. In addition to the density distributions simple expressions are obtained 
for the integrated densities. The density fluctuations in the fluid near the wall are small 
and short ranged for the hard sphere fluid. The effects of tails to the interatomic 
potentials outside the hard spheres can be incorporated approximately and could lead to 
much larger fluctuations in the densities. 

Keywordst Hard spheres; Percus-Yevick method; binary mixture 

1. INTRODUCTION 

Some time ago Henderson, Abraham and Barker [ l ]  [HAB] pointed 
out that a fluid in contact with a structureless surface can be regarded 
as a limiting case of a mixture (binary if the fluid is pure) in which one 
of the species is dilute and infinitely large. They developed the 
Ornstein-Zernike equations for the limiting case and went on to use 
the Percus-Yevick approximation for a mixture of hard spheres to 
obtain the density profile of a pure fluid in contact with a plane, hard 
wall. While there are alternative approaches for investigating the 
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156 M. J. STOTT 

distribution of a fluid near a wall, such as density functional methods 
[2] or direct computer simulation using, for example, the Monte Carlo 
method [3], the approach of HAB is very simple and deserves more 
attention. 

However, the behaviour of a fluid mixture in contact with a surface 
is also of interest because of the possibility of segregation taking place 
near the surface. The qualitative features of segregation of a binary 
alloy at  a free surface have been studied by Bhatia and March [4] and 
at a container wall by Stott, Voice and Young [5] ,  and density 
functional methods have been used to investigate adsorption and 
wetting transitions at the interface between a solid and a binary fluid 
mixture by Telo da Gama and Evans [6].  More recently Moradi and 
Rickayzen [2] have used density functional and Monte Carlo methods 
to study the structure of a hard sphere fluid mixture confined between 
a pair of hard walls forming a slit. The treatment of a fluid mixture 
near a structureless hard surface using the approach of HAB is already 
implicit in their original work, and in this paper we provide the details 
of the extension to a mixture and some general results which follow 
from the framework provided by HAB. 

In the next section we reiterate the Ornstein-Zernike equations for a 
multicomponent fluid and follow the approach of HAB by letting the 
concentration of one component tend to zero and its size tend to 
infinity so that the surface of a molecule of this species plays the role of 
a plane wall. The density distributions of each of the other species with 
respect to the wall are given by the appropriate radial distribution 
functions. At this point a useful integrated measure of the degree of 
segregation due to the wall is obtained. In the next section results are 
obtained for the case of a mixture of hard spheres near a hard plane 
wall using the Percus-Yevick approximation, and numerical results for 
a binary mixture are presented. The paper closes with a discussion of 
the results and approximate extensions of the approach to more 
realistic fluid and fluid-wall interactions. 

2. THE ORNSTEIN-ZERNIKE EQUATIONS 

Consider an m-component fluid mixture with total number density p 
and for which the number density of species i is pi = xip. The Ornstein- 
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Zernike equations for this system are: 

where hQ(r1,z) and cij(r12) are the total and direct correlation functions 
respectively for a molecule of species i at rl and o f j  at r2. We assume 
that the intermolecular forces are central so that the correlation 
functions depend just on the distance between the molecules. 

We now consider the dilute limit for the m'th component and let 
x, + 0 in which case the OZ equations become 

The equations (2) are the OZ equations for an m - 1 component fluid 
mixture and we assume that the structure of this fluid is known, 
whereas (3) involves the density distribution of species i with respect to 
a member of the dilute species m through him(r).  

We assume that there is a well defined radius R ,  associated with 
species m, and we shall be concerned with Eq.(3) in the limit of large 
R,. For example, the m molecule could behave as a hard sphere of 
radius R ,  along with weaker interactions with the other components. 
We now introduce C ; , ( Z )  = ci,(R, + z )  and h;,(z) = hi,(R, + z ) ,  
and perform the angular integrations in (3) to obtain in the limit 
R ,  --f 00 

The density distribution of species i measured from the hard surface of 
the dilute species m is given by 
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where pi  = p x i  is the average number density of species i; or 
alternatively we see that the fractional displaced density is 

Before proceeding beyond equation (4) to investigate the form of p i ( z )  
for which we need a relationship between the total and direct 
correlation functions, we note that some progress can be made in 
relating integrated quantities to the properties of the homogeneous 
m - 1 component fluid. 

Returning to Eq.(3) and integrating over all space we obtain 

rn- 1 
him = ci, + C/Sihi/Clm 

I= 1 

where 

(7) 

and similarly for Zg. The hg can be written in terms of the q = O  
component of the partial structure factor Sd(q) using 

Sg(0) = s i j  + mhg 

to give 

(9) 

Whereas the hjrn and Cirri in (10) involve correlations with the dilute 
species the structure factors Sg(O), in the limit of xm -+ 0, are for the 
homogeneous m - 1 component fluid. Recalling that a molecule of 
species m is a hard sphere with large radius R m  we may write 
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but hi,(r) = - 1  for r < R,, and hi, ( R ,  + z )  = h;,(z), and so 

4.rr 
3 

hi, = - - R i  + 4 ~ R i  h;,(z)dz + O(R,) 

The integral of the direct correlation functions involved in (9) can be 
written in a similar form to ( 1  1): 

Ci, = 4xR,ci 3 (3) + 4~R,,,ci 2 (2) + O(R,)  

where the coefficients ci(n) in the expansion depend on the details of the 
direct correlations with the dilute species. Substituting (12) and (13) in 
(10) and using (6)  we have 

where 

The result (14) for the total displaced density is reminiscent of the 
expression for the linear response of an m - 1 component fluid to 
external perturbations; the So are the density response functions of the 
fluid and the perturbing effect of the wall are contained in the 
coefficients ~ ( 2 ) .  but the result goes beyond linear response. 

As a specific example for which detailed results can be obtained we 
consider a two component hard sphere fluid in contact with a hard, 
plane wall and use the Percus-Yevick approximation to link the direct 
and total correlation functions. 

3. HARD SPHERE FLUID 

Simple analytic forms have been obtained for the direct correlation 
functions for a multicomponent fluid of additive hard spheres within 
the Percus-Yevick approximation. Results for the binary hard sphere 
case were first obained by Lebowitz [7] and for the multicomponent 
case by Hiroike [8] whose results we adopt. 
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For a system of hard spheres with m components and the labelling 
such that hard sphere diameters, ui, are ordered with uj > ui f o r j  > i. 
Hiroike [8] obtained for the direct correlation functions within the 
Percus-Yevick approximation 

(16) 
ai + bir + dr3 r < C T ~  

0 r > C T ~  

-cii(r) = 

and f o r j  > i 

i= I 

and 77 = <3 is the overall packing fraction. The key results we need in 
order to apply Eqs. (4) and (14) and obtain pl(z)  and 6p, are 
C;,(Z) R’E’” c1,(R, + z )  and the coefficient cj2) in the expansion of C,, 
both for x, + 03. Some tedious algebra yields 

a1 z <  -1 

--c i,,? = a, - ( b  + cu1) ( z  + $ ) 2  - $ < z < 4 
0 $ < 2  
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and 

so that the coefficients incorporating the effects of the wall in the 
density response (14) are 

If we specialize to the case of m = 3 and consider a binary mixture in 
contact with a hard wall then in addition to c i m ( z )  and c ! ~ )  we also 
require the hi, (r)  and S j j  (q  = 0) for the homogeneous two component 
fluid for use in Eqs. (4) and (14) respectively, and these are readily 
obtained from (16) and (17) using the Ornstein-Zernike equations for 
the binary hard sphere mixture. 

4. RESULTS AND DISCUSSION 

We have performed calculations for a two component system of hard 
spheres in contact with a hard wall within the Percus-Yevick 
approximation as described above. A packing fraction r ]  = 0.4 was 
chosen, and the units of length were such that the diameter of the 
smaller hard sphere 01 = I .  Results for p l ( z ) /p l ,  i = 1,2 for a range of 
mixture concentrations, XI, and with the ratio of hard sphere 
diameters cq/c r ,  equal to  I ,  1.4 and 1.8 are shown in Figures 1, 2 
and 3 respectively. 

= 1 are the same as for 
a pure hard sphere fluid in contact with a hard wall and only differ 
from the results illustrated in HAB because of the slightly larger 
packing fraction of r ]  = 0.42 which those authors used. The main 
features of the results for the mixtures, illustrated in Figures 2 and 3, 
are similar to those reported for the pure fluid by HAB. The values of 
p z / p l  at nearest approach to the wall are almost twice the values of g,, 
at closest approach for the two component fluid. The subsequent 
oscillations in p,/p, also have larger amplitude than those in gL,, so 
much so that for ~ / q  = 1.8 the first minimum in p2/p2 is deep 
enough to drive the density slightly negative. This unphysical feature 
we take to be a consequence of the Percus-Yevick approximation, and 

The results illustrated in Figure 1 with a1 
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6r 

0 0.5 1 1.5 2 2.5 3 
z 

FIGURE 1 
where 01 = 1, for the case u* /q  = 1. 

Density, p(z)/p, as a function of distance z from the hard wall in units 

we expect that a better approximation would flatten off the minima in 
p i / &  reduce the amplitude of the oscillations, or otherwise yield a 
non-negative density. A new feature appearing in the density is the 
irregularity near the second maximum for the cases with intermediate 
concentration. This is not present in the case of the pure fluid and is 
more pronounced for the larger a z / q  ratio. This is a real effect due 
to the registration of the first fluid layers which is provided by the 
wall. For a mixture of different sized spheres the centres of the two 
sorts can be as close as q / 2  and 4 2  to the wall and the spheres in 
contact with the wall form a mixed first layer. If now we consider the 
density distribution of a particular species, say 1,  the spheres in the 
second layer of type 1 forming the second peak in p l ( z )  will be 
affected by the registered first layer for z roughly in the range 3a1/2 
to (a, + 4 / 2 ,  which is the range where we see the irregularities in 
Figures 2 and 3. The effect becomes washed out the further we move 
from the wall. Similar registration effects in the radial distribution 
functions for the homogeneous fluid mixture are smaller near the 
second peak and are washed out more rapidly because the volume 
available increases as z2.  

Direct integration of the calculated density distributions or 
application of Eq. (14) gives 6pi and results for this quantity as a 
function of concentration are presented in Figure 4. The results for 
both species are smooth functions of concentration, are negative for 
the chosen parameters, and are small in magnitude, with a significant 
contribution coming from the excluded region against the wall of 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
0
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



6 

4 

2 

4 

2 

4 

PLd 
Pi 2 

4 

2 

4 

2 

n 

FLUID MIXTURE NEAR, HARD WALL 

I I I 1 

163 

0 0.5 1 1.5 2 2.5 3 z 

FIGURE 2 Density, pi(z)/p,,  as a function of distance z from the hard wall in units 
where 61 = 1, for the case q / u ,  = 1.4 . The concentrations of the mixtures, X I ,  are as 
given on the figures, and results are shown for species 1,-; and species 

extent ai/2 as we have chosen to integrate out from the wall itself 
rather than from the distance of closest approach. Changing the fluid 
parameters within reasonable limits does not change the results much, 
for example, a larger q / c q  ratio of 2.2 increases slightly the spread 
between the results for the different species, and a larger packing 
fraction of = 0.45 reduces the magnitude of both. 
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4 

2 

0 

p&j 
Pi 

2 

4 

x1 = 0.0 

_-  
2 

0 
0 0.5 1 1.5 2 2.5 3 

FIGURE 3 Density, p i ( z ) / p i ,  as a function of distance z from the hard wall in units 
where u1 = 1 ,  for the case u2/u1 = 1.8. The concentrations of the mixtures, XI, are as 
given on the figures, and results are shown for species 1,-; and species 2- - - _. 

The results for Gpi/pi give no indication that segregation or other 
large effects might take place near the hard wall for a mixture of hard 
spheres, at least within the limitations of the Percus-Yevick 
approximation, and this is not unexpected. However, Eq. (14) is not 
restricted to a hard sphere fluid. We may consider a more general 
system by using in Eq. (14) the long wavelength limit of the partial 
structure factors, So(q = 0), for the mixture obtained from calcula- 
tions employing realistic interactions, or from scattering experiments, 
or using thermodynamic relations. These quantities given the 
susceptibility of the homogeneous fluid mixture to the presence of 
the wall. The interactions between the fluid molecules and the wall 
affect the density distributions near the wall through the direct 
correlation functions c jm(r) .  The effect of the addition of tails to the 
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FIGURE 4 Total displaced density, %/pi as a function of mixture concentration, X I ,  
for u ~ / q  = 1 ......... ;uz/ul = 1.4 _ _ _ _ ;  and u2/u1 = 1.8-. 

3z 
Pi 

0.2 

0.1 

0 

hard wall-fluid interaction can be treated within perturbation theory. 
At the level of the random phase approximation (RPA) we would have 

i = 2  
- 

- 

............................................................................ 

__-* ___---- __--- i = l  _____-- -* -  _____------ 
- 

_______._____--------- _.__.__.--- 

1 I I 

where c", is the direct correlation function for hard spheres given by 
(17) and z($ is the interaction potential extending beyond the hard 
sphere. It straightforward to find the corresponding tail corrections to 
the coefficients, c!'), in the expansion given by equation (13) which 
enter the result, (14), for the total displaced density. We have 

(22) 
1 

Cj') = - 2 .i( I / (  1 - 71) + aoi + ba ?/3) - Gi/kBT 

where 
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and in the notation used earlier vim(Rm + z )  = v im(z) ,  so that the 
intergral in (23) is taken out from the hard wall. However, we note that 
the small values for S p i / p i  for the binary hard sphere mixture against a 
hard wall which are shown in Figure 2 result after cancellation between 
the two terms (for the binary mixture) in Eq. (14). This is particularly 
marked for the smaller species where the individual terms in (14) are at 
least a factor of 10 larger in magnitude than the results. This 
cancellation present for hard spheres could be upset if the interactions 
with the surface differ from hard wall by the addition of a tail outside 
the wall, and larger total displaced densities could results. In these 
cases the net effect of the hard wall terms in Eq. (16) should be 
negligible because of the cancellation, and a good approximation 
should be 

This is, of course, the result linear response would give, but it would 
seem to be a reasonable approximation in circumstances where linear 
response theory would not normally work because of the strong 
interactions with the hard wall. 

Finally, we point out that it is straightforward in the case of a binary 
mixture near a wall to use as variables the total number density and 
the concentration ( N  and c> rather than the densities of the species. 
This change would lead to the expression of the total displaced 
quantities, (16), in terms of the structure factors: S”(O), SCC (0), and 
SN,-(O), introduced by Bhatia and Thornton [9], which may be more 
useful in some circumstances. 
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